
Computational Linguistics II
— Grammars, Algorithms, Statistics —

Dan Flickinger
Oslo and Stanford Universities
danf@csli.stanford.edu

Tore Langholm
Universitetet i Oslo
torel@ifi.uio.no

Stephan Oepen
Oslo and Stanford Universities
oe@csli.stanford.edu

(At Least) Three Dimensions to the Parsing Problem

Vertical
• top-down successively rewrite S until input is matched (goal-oriented);

• bottom-up combine constituents until S is derived (data-oriented).

Depth
• exhaustive find all derivations (for each parsing goal) in ‘parallel’;

• best-first find one (or set of n-best) derivations as soon as possible.

Horizontal
• uni-directional instantiate rule RHSs left-to-right (or right-to-left);

• bi-directional instantiate rule RHSs in variable order, e.g. head-driven.

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (2)

Review: Top-Down vs. Bottom-Up Parsing

Top-Down (Goal-Oriented)

• Left recursion (e.g. the ‘VP→ VP PP’ rule) causes infinite recursion;

• grammar conversion techniques (eliminating left recursion) exist, but will
often be undesirable for natural language processing applications;

→ assume bottom-up as basic search strategy for remainder of the quarter.

Bottom-Up (Data-Oriented)

• unary (left-recursive) rules (e.g. ‘NP→ NP’) would still be problematic;

• lack of parsing goal: compute all possible derivations for, say, the input
adores snow ; however, it is ultimately rejected since it is not sentential;

• availability of partial analyses desirable for, at least, some applications.

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (3)

Quantifying the Complexity of the Parsing Task

1 2 3 4 5 6 7 8
Number of Prepositional Phrases (n)

0

250000

500000

750000

1000000

1250000

1500000

Recursive Function Calls

• • • • • •
•

•

•

Kim adores snow (in Oslo)n

n trees calls

0 1 46
1 2 170
2 5 593
3 14 2,093
4 42 7,539
5 132 27,627
6 429 102,570
7 1430 384,566
8 4862 1,452,776
...

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (4)

Using the Chart to Bound Ambiguity

• For many substrings, multiple ways of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].

'

&

$

%2 3 4 5 6 7

girls with hats from France

1 2 3

4 5

6 7

8

9

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (5)

Review: Chart Parsing

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as
equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (6)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do
chart [i,i+1]← {α |α→ input i ∈ P};

for (1 ≤ l < |input |) do
for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do
if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then
chart [i,i+l+1]← chart [i,i+l+1] ∪ {α};

'

&

$

%

[0,2]← [0,1] + [1,2]
· · ·

[0,5]← [0,1] + [1,5]
[0,5]← [0,2] + [2,5]
[0,5]← [0,3] + [3,5]
[0,5]← [0,4] + [4,5]

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (7)

Limitations of the CKY Algorithm

Built-In Assumptions

• Chomsky Normal Form grammars: α→ β1β2 or α→ γ (βi ∈ C, γ ∈ Σ);

• breadth-first (aka exhaustive): always compute all values for each cell;

• rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

• Liberate order of computation: no assumptions about earlier results;

• active edges encode partial rule instantiations, ‘waiting’ for additional
(adjacent and passive) constituents to complete: [1, 2, VP→ V •NP];

• parser can fill in chart cells in any order and guarantee completeness.

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (8)

Generalized Chart Parsing

• The chart is a two-dimensional matrix of edges (aka chart items);

• an edge is a (possibly partial) rule instantiation over a substring of input;

• the chart indexes edges by start and end string position (aka vertices);

• dot in rule RHS indicates degree of completion: α→ β1...βi−1 • βi...βn

• active edges (aka incomplete items) — partial RHS: [1, 2, VP→ V •NP];

• passive edges (aka complete items) — full RHS: [1, 3, VP→ V NP•];

'

&

$

%

The Fundamental Rule

[x, y, α→ β1...βi−1 • βi...βn] + [y, z, βi → γ+•]

7→ [x, z, α→ β1...βi • βi+1...βn]

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (9)

An Example of a (Near-)Complete Chart

1 2 3 4 5

0
NP→NP •PP
S→NP •VP
NP→ kim •

S→NP VP •

1 VP→V •NP
V→ adores •

VP→VP •PP
VP→V NP •

VP→VP •PP
VP→VP PP •
VP→V PP •

2 NP→NP •PP
NP→ snow •

NP→NP •PP
NP→NP PP •

3 PP→P •NP
P→ in • PP→P NP •

4 NP→NP •PP
NP→ oslo •

�
�

�
�0 Kim 1 adores 2 snow 3 in 4 Oslo 5

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (10)

(Even) More Active Edges

0 1 2 3

0
S→ •NP VP

NP→ •NP PP
NP→ • kim

S→NP •VP
NP→NP •PP

NP→ kim •
S→NP VP •

1
VP→ •VP PP
VP→ •V NP
V→ • adores

VP→V •NP
V→ adores •

VP→VP •PP
VP→V NP •

2 NP→ •NP PP
NP→ • snow

NP→NP •PP
NP→ snow •

3

• Include all grammar rules as epsilon edges in each chart [i,i] cell.

• after initialization, apply fundamental rule until fixpoint is reached.

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (11)

Our ToDo List: Keeping Track of Remaining Work

The Abstract Goal
• Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naı̈ve Strategy
• Keep iterating through the complete chart, combining all possible pairs,

until no additional edges can be derived (i.e. the fixpoint is reached);

• frequent attempts to combine pairs multiple times: deriving ‘duplicates’.

An Agenda-Driven Strategy
• Combine each pair exactly once, viz. when both elements are available;

• maintain agenda of new edges, yet to be checked against chart edges;

• new edges go into agenda first, add to chart upon retrieval from agenda.

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (12)

Backpointers: Keeping Track of the Derivation History

0 1 1 3

0
2: S→ •NP VP

1: NP→ •NP PP
0: NP→ • kim

10: S→ 8 •VP
9: NP→ 8 •PP
8: NP→ kim •

17: S→ 8 15 •

1
5: VP→ •VP PP
4: VP→ •V NP
3: V→ • adores

12: VP→ 11 •NP
11: V→ adores •

16: VP→ 15 •PP
15: VP→ 11 13 •

2 7: NP→ •NP PP
6: NP→ • snow

14: NP→ 13 •PP
13: NP→ snow •

3

• Use edges to record derivation trees: backpointers to daughters;

• a single edge can represent multiple derivations: backpointer sets.

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (13)

Chart Elements: The Edge Structure
�

�

�

�
#[id: (i-j) α --> edge1 ... edgei . βi+1 ... βn { alternate1 ... alternaten }

∗]

Components of the edge Structure

• id unique edge identifier (automatically assigned my make-edge());

• i and j starting and ending string index (chart vertices) for this edge;

• α category of this edge (from the set C of non-terminal symbols);

• edge1 ... edgei (list of) daughter edges (for β1 ... βi) instantiated so far;

• βi+1 ... βn (list of) remaining categories in rule RHS to be instantiated;

• alternate1 ... alternaten alternative derivation(s) for α from i to j.

→ implemented using defstruct() plus suitable pretty printing routine.

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (14)

Ambiguity Packing in the Chart

General Idea

• Maintain only one edge for each α from i to j (the ‘representative’);

• record alternate sequences of daughters for α in the representative.

Implementation

• Group passive edges into equivalence classes by identity of α, i, and j;

• search chart for existing equivalent edge (h, say) for each new edge e;

• when h (the ‘host’ edge) exists, pack e into h to record equivalence;

• e not added to the chart, no derivations with or further processing of e;

→ unpacking multiply out all alternative daughters for all result edges.

oslo — -sep- (oe@csli.stanford.edu)

Computational Linguistics II: Parsing (15)

