
Computational Linguistics II (Fall 2006, Exercise 4)

High-Level Goals

• Establish the lexeme vs. word type distinction.

• Add lexical rules to the grammar for inflection and derivation.

• Simplify the lexicon and extend grammar coverage using the new rules.

Background Reading

Read Sections 8.1, 8.2, and 8.4 through 8.8 from Sag, Wasow, & Bender (2003). Make sure to compare
their examples and grammars to our slide copies and observe where in the lecture we have in some cases
(further) simplified over the book; specifically, at this point, ignore everything they have to say about
semantics, default inheritance, CASE, ARG-ST, FORM, and any other attributes not present in our own
grammars. Also, observe that their notation of lexical and inflectional rules differs from the one used in
the LKB (where lexical rules are much more similar to regular phrase structure rules, only working within
the lexicon).

1 Obtaining the Starting Grammar

• For this week, please obtain a fresh starting grammar:

cvs checkout grammar4

For a change, we provide you with an initial grammar that produces error messages when loaded and does
not parse any sentences; half-way into the exercise we will arrive at a working version of the grammar.
This exercise involves a considerable amount of rearrangement of the grammar files. This is, unfortunately,
something that grammar engineers end up doing quite often in real life. Take things step-by-step, and
consider making backup copies of your files occasionally.

• Through this exercise, we will rework the grammar in order to make the distinction between lexemes and
words and to add inflection in order to remove more redundancy in the lexicon. Following Sag, Wasow, &
Bender (2003), we will make every entry in the lexicon a subtype of lexeme, but require that the syntactic
rules continue to operate on structures which are subtypes of word. This means that every lexical entry will
have to be converted from lexeme to word via a (lexical) rule. Some of these rules will have morphological
effects, changing the ‘surface’ orthography using another facility of the LKB that we have not exercised
so far.

2 Allow for Words to Have Internal Structure (20 points)

• Move the ARGS attribute from phrase to a higher type which includes both words and phrases.

• Add the top-level lexeme vs. word distinction. We do this by distinguishing between two types word and
lexeme which inherit from a new type lex-item. The feature ORTH is introduced on lex-item. The type
word will be a supertype of all the lexeme-to-word rules (this may seem a little surprising at first, having
these new unary rules be subtypes of word , but have patience). The general structures you need will be
as follows:

lex-item := expression &

[ORTH *string*].

lexeme := lex-item.

word := lex-item &

[HEAD #head,

SPR #spr,

COMPS #comps,

ARGS < lexeme & [HEAD #head, SPR #spr, COMPS #comps] >].

• The existing lexical types (verb-word et al.) have constraints which should belong to lexemes under our
new view of the world. Copying from old types where appropriate, create subtypes of lexeme for verb-lxm,
noun-lxm et al., which use the constraints from verb-word, noun-word et al. that hold true across all
inflected forms. Additionally, make det-lxm, prep-lxm, and the ones for adjectives and adverbs inherit
from a new type const-lxm, defined as follows:

const-lxm := lexeme.

• As the result of this revision, your grammar should now have a fair number of subtypes to lexeme and
rather few subtypes to word—viz. only ones corresponding to inflectional properties: 3sing-word and non-

3sing-word. Conversely, most of the lexeme subtypes need not be subdivided for agreement properties,
except in the case of determiners maybe (where the contrast between that vs. those can be viewed as
‘lexicalized’ inflection, i.e. specific AGR properties on lexemes).

3 Rework the Lexicon as a Repository of Lexemes (20 points)

• Remove all lexical entries which are not morphologically equivalent to base forms (for example dogs and
barks). If your ‘lexicon.tdl’ file contains the form gave but not give, replace the existing entry with one
whose orthography reflects the base form give.

• Change the types on the remaining entries so they are all subtypes of lexeme appropriate for the entry.
Your file should now consist of base forms with just base orthography and with each entry instantiating
a single type.

• At this point, loading your grammar should no longer result in error messages printed to the Lkb Top

window, and you should again be able to parse sentences. If there are still load-time errors, make sure
that all required types (see above) are defined; if necessary, take a look at the (new) file ‘irules.tdl’ to
look up what the names for lexeme and word subtypes are expected to be. Test the functionality of the
resulting grammar, using the batch parse machinery on the ‘all.items’ file.

• You are likely to see spurious ambiguity, still, since we now have both lexemes and words in the grammar
and need to make sure that only inflected forms (i.e. words) get to project into the syntax. Using knowledge
about existing constraints on (the daughters in) your rules and a bit of experimentation with the LKB
parser, find a sentence or two for which your grammar admits ‘duplicate’ analyses, where at least one
tree is illegitimate because it allows an uninflected lexeme to directly build a phrase. Remark on your
discoveries in a couple of sentences that you add as comments to the top of the types file. To eliminate this
unwanted ambiguity, add an additional type syn-struc to include words and phrases, but exclude lexemes,
and then use this type to ensure that phrases do not accept lexemes as their (head) daughters. Consider
the use of a parameterized list type ‘list of syn-struc’ (see earlier slide copies from the formalisms lecture)
to encode this constraint as a condition on the ARGS value on the type phrase.

• We have given you a new file ‘irules.tdl’ which defines the actual inflectional rules. Go take a tour
of these new rules, but please do not worry too much about the lines beginning with the ‘%’ character;
these are instructions to the LKB orthographemic component, relating the application of each rule to a
specific variation in spelling. Looking at the file in emacs(1), convince yourself that all inflectional rules
map arguments of type lexeme to signs of type word (which can then act as arguments to syntactic rules).
Study carefully the parse tree for the sentence the dog barks near the cat , and observe how the different
types of lexemes are mapped to words by the inflectional machinery.

4 Another Type of Lexical Rule (30 points)

• Next, we will introduce another type of lexical rule, namely a lexeme-to-lexeme rule, to capture another
generalization and further eliminate redundancy in our lexicon. In English, most ditransitive verbs with
two NP complements (e.g. give, send, sell) can undergo the lexical process known as dative shift, resulting

in a variant of the verb where the second NP argument has been promoted to the first argument position,
and the original first NP argument turns into a second PP argument, headed by the preposition to. For
example, dative shift captures the alternation in the two sentences that cat gave the aardvark those dogs

and that cat gave those dogs to the aardvark. To account for this alternation in argument structure, we
will add a new lexical rule, deriving one verbal lexeme from another.

Open the (new) file ‘lrules.tdl’ and add a new rule which has the following rough structure:

dative-shift-lrule := ... &

[ORTH #orth,

...

ARGS < ... & [ORTH #orth, ...] >].

Fill in any necessary constraints for each attribute, so that the rule takes as its single argument a ditran-
sitive verb with two NP complements, and produces a ditransitive verb with an NP complement and a
PP complement.

• Remove your hand-built lexical entry for the NP – PP version of give from the lexicon, since we now have
a productive lexical rule which generates this entry for you. Your grammar should now account nicely for
the dative alternation. Test appropriately and, as always, consider additions of additional test items and
maybe lexical entries for testing purposes.

5 Agentive Nominalizations (30 points)

For the remaining part of this assignment we will need to make use of the LKB orthographemic component—i.e.
the facility to associate a change in orthography with a lexical rule. You should be able to just work from the
examples provided in the new ‘irules.tdl’ file, and refer to the lecture slides from last week.

• Add another derivational lexical rule to the file ‘lrules.tdl’, this one deriving agentive nouns from
verbs, to provide an analysis for sentences like The barkers chased those cats and the chasers barked.
Adapt the orthography-changing machinery (taking inspiration from the examples of inflectional rules
in ‘irules.tdl’), to add the -er suffix to the input orthography of this new rule. Add relevant test
items (both grammatical and ungrammatical) to the file ‘all.items’, and check your analysis for both
overgeneration and undergeneration.

• Extend your analysis of agentive nouns to allow for a complement PP marked with of, as in the chasers

of the cats barked. Be sure that your analysis still accepts The chasers barked. Assume for this exercise
that we also want to accept the givers of the cats to the dogs barked happily. Add more test examples to
your ‘all.items’ to test your analysis.

Submit your results in email to Dan and Stephan by noon on Tuesday, November 7.

