
Computational Linguistics II (Fall 2006, Exercise 6)

High-Level Goals

1. Solidify our understanding of Common-Lisp concepts: local variables and degrees of equality;

2. implement the destructive unifier and a structure-preserving copy function for feature structures;

3. finally, put everything together: make our active chart parser use the unifier.

Obtain the Starting Package and Take a Tour of the LKB

(a) As always, bring up bash, obtain a starting package by typing cvs checkout grammar9 (in bash), launch
emacs, and start the LKB. We have provided a simple unification grammar that will provide the basis
for our own implementation of graph unification and unification-based bottom-up chart parsing. Use
the Parse –Parse input menu to parse one or two sentences (e.g. the dog barks) and study the feature
structures of our grammar; they should look terribly familiar.

(b) To view the type hierarchy underlying the grammar, select View –Type hierarchy and choose *top* to
browse the complete hierarchy (everything below the most general type). Notice how types like adv and
noun-word-3sing have multiple parents, i.e. inherit from more than one supertype. In testing our unifier,
we will want to compare unification results we obtain to the feature structures recorded in the lkb, as we
can browse them by selecting Expanded type on any of the nodes in the type hierarchy display.

(c) Open the file ‘dag.lsp’ (from the ‘grammar9’ directory). Once again, we will be fleshing out skeletal
(dummy) functions provided in this file, typically by replacing occurrences of ‘???’ in the function bodies
with an actual implementation.

1 Identity vs. Equivalence of Objects (15 Points)

(a) Write a recursive function isomorphicp() that can be used to compare symbols, numbers, and lists of
symbols and numbers. isomorphicp() takes two arguments and evaluates to true if these are equivalent
(which includes token identity and value or structural equivalence), e.g.

? (isomorphicp ’foo ’foo) → t

? (isomorphicp 42 42.0) → t

? (isomorphicp ’(42 foo) ’(42.0 foo)) → t

? (isomorphicp ’((42 (foo))) ’((42.0 (foo)))) → t

Note: For the purpose of this exercise, we will assume that the built-in predicates equal() and equalp()

are compromised and must not be used in the definition of isomorphicp(). Instead, the function definition
will have to determine what types of arguments it is given and act appropriately. If you find it difficult to
choose a comparison predicate for numbers, re-read our slide copies from earlier in the course (or some of
the code of this exercise).

(b) Consider the following pairs of assignments to variables foo and bar; for each pair, determine the truth
value of ‘(eq foo bar)’ (preferably through introspection rather than experimentation) and explain the
results:

? (defparameter foo ’(1 2 3)) → foo

? (defparameter bar ’(1 2 3)) → bar

? (setf foo ’(1 2 3)) → (1 2 3)

? (setf bar foo) → (1 2 3)

? (setf foo (cons 0 foo)) → (0 1 2 3)

? (setf bar (cons 0 bar)) → (0 1 2 3)

? (setf foo (rest foo)) → (1 2 3)

? (setf bar (rest bar)) → (1 2 3)



2 Implementing the Unifier (30 Points)

(a) For the representation of typed feature structures, we will rely on two abstract data types—called dag and
arc—to encode a node in a dag structure and a feature – value pair in a dag, respectively. In ‘dag.lsp’,
define the structure dag, with components forward, type, arcs, and copy, and also define arc, with compo-
nents feature and value. While the first three components of dag should feel familiar from your reading
of Wroblewski (1987), we will have more to say on the copy slot later in this exercise. Once you have
definitions for the dag and arc structures, edit the file ‘script’ to delete the comment character (the
semicolon) at the start of the last line, save everything, and reload the grammar.

(b) Next, implement the function deref(), which recursively follows non-nil forward pointers until it reaches
a dag that is not forwarded. Throughout all dag-manipulating functions, we need to make sure that dags
are always dereferenced (or ‘forward-resolved’) at each level, so as to avoid looking at the type or arcs

slots of a dag that has a non-nil forward value.

As we did for the edge structure and others before, we have already arranged for you for dags to print
(more or less) readably. For debugging, however, you may choose to turn off pretty-printing of (all)
structures to see the ‘raw’ underlying representations, e.g.

? (defparameter foo

(make-dag :type ’word

:arcs (list (make-arc :feature ’agr :value (make-dag :type ’3sing)))))

? (setf *pretty-print-structures-p* nil)

? foo

(c) Go through the definition of unify1(), the main function of the unifier: unify1() can count on the top-
level unify() function to establish a catch() context for non-local exits (as unification failure is detected
at some arbitrarily deep recursion level). At this point, ignore the optional path parameter to the unifier;
for the time being, we will always unify two top-level feature structures, but the parser will later want to
unify one structure into another structure (e.g. path will take on values like ‘(ARGS REST FIRST)’ then).
In our typed feature structure universe, we will use nil to denote the inconsistent ‘bottom’ type of the
type lattice, i.e. indicating failure of unification. In essence, unify1() implements a typed variant of the
destructive unification algorithm proposed by Wroblewski (1987): after dereferencing both input dags,
it first determines the unification (aka greatest lower bound) of the types on the two structures. The
computation of the greatest lower bound for two types is available through the function glb() (which we
supply; maybe experiment with the glb() interactively: call it with two symbols naming types from the
hierarchy as its arguments). Only if a greatest lower bound exists, can unification proceed; unify1() then
puts the two input dags into one equivalence class, records the (potentially new) type on the result, and
then combines all attributes from both dags.

(d) Since our unifier is destructive (i.e. permanently changes both its input dags), it is essential to make sure
not to modify any of the structures that are part of the grammar. To avoid doing damage to the grammar,
we will typically create a copy before invoking a destructive operation (like unify()) on it. Copying, in
a nutshell, walks through the dag, creating copies of each node and all arcs, such that the resulting dag
is structurally equivalent to the original but shares no elements with it (i.e. no two dag nodes or arcs in
the original and copy are token-identical).

Our dag representation of typed feature structures builds on token-identity (aka eq()-ness) of nodes to
encode coreference (aka feature structure reentrancy): where two paths in a feature structure refer to the
same value, the underlying dag structure has one node occurring as the value in multiple feature – value
pairs. A full traversal of the structure will thus lead to multiple visits to that node. Use the lkb to inspect
the definition of the type head-initial in our grammar. Informally, what it states is that in head-initial
constituents the value of HEAD on the mother is reentrant with that of the first daughter (i.e. the first
element in the ARGS list).

Next study the result of the following code fragment (or consider first writing a function dag-arc-value()

which, given a dag and a feature, returns the value of that feature in the dag—dag-arc-value() would
allow elimination of the frequent loop()s below) to be sure you understand how reentrancy works in our
feature structures:



? (let* ((dag (type-dag (lookup-type ’head-initial)))

(head (loop

for arc in (dag-arcs dag)

when (eq (arc-feature arc) ’head) return (arc-value arc)))

(args (loop

for arc in (dag-arcs dag)

when (eq (arc-feature arc) ’args) return (arc-value arc)))

(first (loop

for arc in (dag-arcs args)

when (eq (arc-feature arc) ’first) return (arc-value arc))))

(eq head (loop

for arc in (dag-arcs first)

when (eq (arc-feature arc) ’head) return (arc-value arc))))

→ t

Keeping our representation of reentrancy in mind, the identity of nodes that appear under more than one
path in a structure must be preserved when creating copies of dags; the function copy1() will use the
copy slot of the dag structure to allow each node of the original dag to (temporarily) keep a reference to
its corresponding copy. In other words, copy1() checks the copy slot for each node that it visits before
creating a new dag: where the copy slot is empty, a fresh dag copy is created and recorded in the copy slot
of the input dag; whenever copy1() finds itself visiting the same input node twice (indicating reentrancy),
the copy made earlier will be available in the copy slot and can be reused. Reusing the same (copied) dag
multiple times in the emerging copy of the input structure has the intended effect of preversing reentrancy.

Go through occurrences of ‘???’ in the definition of copy1() in ‘dag.lsp’ and fill in the missing parts.

(e) Next, we need a function to reset the copy slots of all dag nodes in a feature structure to empty values (i.e.
nil), which we will use to undo the temporary effects of copy1() on the input dag after the completion
of each copy operation (otherwise later copies might end up re-using dags that form part of an earlier
copy). Implement the body of restore() in ‘dag.lsp’. Finally, to complete the copy procedure, provide
the definition of the top-level entry point copy(), making sure that the input dag is restored after the
auxiliary function copy1() has been called and returned the actual copy.

Note: You may have noticed that, unlike in earlier exercises, we have hardly encouraged you to do
testing of individual functionality so far. Without the ability to copy both input structures prior to
unification, unify() would destructively modify the internal dags of the grammar and what worked once
may not work the next time. However, damage to the grammar internals may still result while we have
not confirmed proper operation of the copy() procedure. While debugging the copier and unifier, be sure
to reload the grammar frequently (from the lkb menu) in order to reinitialize all grammar-internal dag
structures.

(f) As indicated earlier, the value of the global variable *grammar* has been reorganized to be a structured
object holding the various parts of the grammar—types, rules, lexical entries, et al. For the purposes of
this part of the exercise (validating the unifier) we will be exclusively concerned with the types component
in the grammar structure. Each type corresponds to what you can inspect in the lkb View –Expanded

type menu (or from the type hierarchy browser) and is implemented as a type structure with components
id (the type name as a symbol) and dag (the feature structure of the type), including all information
inherited from super-types.

To test the unifier, use the function lookup-type() (see above) to retrieve pairs of types, extract their
dag values, copy them, and then invoke the unifier on them, e.g.

? (unify (copy (type-dag (lookup-type ’noun-word)))

(copy (type-dag (lookup-type ’3sing-word))))

Also, note that you can invoke the lkb feature structure viewer on a dag object by calling the browse()

function on it.

(g) Finally, to get a somewhat more substantive test, complete the body of test() in ‘dag.lsp’. The purpose
of the test() function is to iterate over all types of the grammar and attempt to unify them against all
types of the grammar (including themselves). Whenver the unification succeeds, test() is to print a line
like the following



‘POSTMODIFIER’ & ‘PREMODIFIER’ = ‘ADV’

which we take to indicate that postmodifier and premodifier successfully unify to adv (consult the lkb

type hierarchy to see why). A complete list of successful unifications for this grammar is in the file ‘GLBS’;
once you have verified the implementation of your test() function and feel content with the results,
compare the print-out you get to our file.

3 Variable Binding (15 Points)

(a) Consider the following definitions for two global variables and one function.

? (defparameter foo 4) → foo

? (defparameter bar 2) → bar

? (defun mystery (foo)

(format t "~a~%" foo)

(format t "~a~%" bar)

(let ((foo 2)

(bar (+ foo 10)))

(format t "~a~%" foo)

(format t "~a~%" bar)

(let* ((foo 3)

(bar (+ foo 10)))

(format t "~a~%" foo)

(format t "~a~%" bar))))

→ mystery

Explain the print-out that results from each of the format() calls in the body of mystery() when evalu-
ating ‘(mystery 42)’. Maintain a table to keep track of the values for foo and bar at each step.

(b) The built-in Common-Lisp special forms push() and pop() manipulate lists with a stack semantics (last-
in, first-out), e.g.

? (defparameter *stack* ’(1 2 3)) → *stack*

? *stack* → (1 2 3)

? (push 0 *stack*) → (0 1 2 3)

? *stack* → (0 1 2 3)

? (pop *stack*) → 0

? *stack* → (1 2 3)

Experiment with push() and pop() and consider writing functions that have the exact same behaviour.
Why is it impossible to (re-)implement push() and pop() as functions?

4 Unification-Based Parsing (40 Points)

For a change, we have done quite a bit of work for you when it comes to building a unification-based chart
parser. The global structure *grammar* provides the following components:

– types — list of all types defined in the grammar, each a type structure with components id and dag ;

– lexemes — list of lexical entries, lexeme structures with components id, dag, and form; we will use
the form value (a symbol) to look up lexical entries and dag as the category on initial lexical edges;

– rules — list of grammar rules, rule structures with components id, dag, and rhs ; the dag value is the
full feature structure, including daughters in its ARGS list, and rhs a list of paths into the structure;

– roots — list of grammar start symbols, each a root structure with components id and dag.

We have modified the parse chart initialization in ‘active.lsp’ to take advantage of these new structures;
go have a look at the revised parse() function (when compared to our earlier, context-free variant) to
see how the new *grammar* organization works. In the unifier, our unify() routine is prepared to take
an optional path argument, requesting that the second dag be unified into the first at the given path.



Also, our current version of ‘dag.lsp’ already supplies a predicate equivalentp() to compare two dags
for structural equivalence (all types and arcs on all nodes are the same), though this function may require
a little more work later in this exercise.

(a) Complete the conversion of the chart parser from dealing with atomic categories to feature structures.
Identify the few remaining parts of the code in ‘active.lsp’ that deploy category equality when comparing
edges and make the necessary changes to deal with feature structure categories. Consider writing a function
non-destructively-unify() that takes three arguments—two dags plus a path pointing to an argument
position in the first dag—and returns the result of the unification without permanently altering the input
dags.

(b) In selecting the parsing result(s) from the chart, parse() calls a function sentencep(), which we need
to implement for edges with feature structure categories. sentencep() takes an edge as its argument and
returns true if the edge is (i) passive and (ii) compatible (aka unifiable) with one of the start symbols of
the grammar.

(c) At this point, you should be able to test the parser on sentences from our domain (animals in potentially
violent action). Test at least a few examples, non-ambiguous and ambiguous, and compare the results
you get to the lkb built-in parser. You will probably find that the pretty printing of edges is not quite
ideal (with nil showing as the edge category), but we will defer this issue for this course. To inspect the
feature structures associated with edges, note that you can invoke the browse() function on all objects
with DAGs, i.e. types, rules, lexemes, start symbols, edges, and (of course) dags themselves.

(d) To enable more readable printing of edge structures (and for later optimization of the parser), we will need
to allow each edge to keep track of the structure from the grammar that gave rise to it, i.e. the lexeme or
rule that ‘licensed’ an edge. Our edge structure (as of this week) already has a slot sign, which we will
have to set appropriately in all make-edge() calls; e.g.

? (let ((rule (first (grammar-rules *grammar*))))

(make-edge :from 0 :to 42

:category (rule-dag rule) :unanalyzed (rule-rhs rule) :sign rule))

→ #E[1: (0-42) head-modifier-rule --> . (ARGS FIRST) (ARGS REST FIRST)]

Make the necessary adaptations in the parser and confirm that all edges have correct values in the sign

slot; demonstrate test cases for different types of edges.

5 Ambiguity Packing (Optional; 10 Points)

Surely you must have noticed that our unification-based parser, at this point, fails to perform any packing
of chart edges, i.e. we always return as many edges from the parse() function as we expect analyses for
the input string. However—since we have replaced the original equal() comparison of atomic categories
with a call to equivalentp() when looking for a suitable host in pack-edge()—we should expect the
ambiguity for those dogs chased the cat near that aardvark, say, to pack nicely into a single edge.

(a) Use the browse() function on both edges returned by our parser for this input (or use the built-in lkb

parser and view the feature structures of the top nodes on the two trees; or use the lkb chart browser and
inspect the candidate edges for ambiguity packing); start from the assumption that the implementation
of equivalentp() that we have kindly supplied is correct (or perform a static code review of our function
to convince yourself) and compare the feature structures to work out in which sense they are, indeed,
not equivalent. This analysis will lead you to an important, new or familiar, insight into the nature of
the encoding we have adopted for unification-based grammar rules; summarize your findings in a few
sentences. Why is it impossible for the parser in its current form to perform local ambiguity packing?

(b) Modify the definition of equivalentp() to address this problem; test on a few sentences of increasing
ambiguity and note the benefits of ambiguity packing.

6 Filtering Impossible Unifications (Optional; 10 Points)

The call counting clearly shows that a large number of unifications fail. Given off-line inspection of
the grammar rules, we should be able to predict a large proportion of those unification failures without



even having to call unify(). In this part of the exercise, we will compile what is often called a rule
filter, conceptually a table indexed by rules and their argument positions providing the information about
impossible feeding relations. For example, prior to parsing we can determine that the specifier – head rule
can never feed into the first argument position of the head – complement rule, simply by inspection of the
two feature structures.

(a) For maximum efficiency, we will implement the rule filter as an additional element of the rule structure.
In our usual supportive way (for this week), we have already supplied a component filter in the definition
of rule. The purpose of this exercise is to cross-multiply all rules in all argument positions and compute,
for each rule and each argument position, the list of grammar rules that cannot unify into that argument
position. In other words, we want the filter value on a rule to be a list of sets: the top-level list will
contain one set per argument position (i.e. there will be two list elements for a binary rule), and each set
is the collection of rules that, by static inspection of the grammar, was found to be incompatible with
that argument position. Look at the definition of compatiblep() towards the end of ‘active.lsp’ to
see how the rule filter will be put to work. compatiblep(), when called with one active and one passive
edge, retrieves the filter value on the rule underlying the active edge (as this rule initially determined the
argument positions of the edge) and indexes the filter according to the numerical index of the argument
position to be filled next, i.e. the difference between the total number of argument positions and the
remaining unanalyzed ones.

Implement the body of compute-rule-filter() (in ‘active.lsp’) to augment each rule in *grammar*

with a suitable list (of sets of incompatible rules) as its filter value. Remember that you can set the variable
*pretty-print-structures-p* to nil to disable pretty printing of objects (e.g. rules while debugging
this part of the exercise) and inspect the ‘raw’ content of each rule. While pretty printing is enabled, you
will only note the effects of compute-rule-filter() indirectly, as the number of rules (over all argument
positions) that were found incompatible is included in parenthesis in the print-out for rule objects, e.g.

? (second (grammar-rules *grammar*))

→ #R[head-complement-rule-0: #D[head-initial ...] --> (ARGS FIRST) (5)]

(b) Once you are content with your implementation of the rule filter computation, find the right place in the
parser to add a call to compatiblep(); then, compute the rule filter, and use the call counting mechanism
to study the effects on parsing efficiency. If you are unable to produce the expected parsing results,
your filter may be overly restrictive (filtering unifications that could have succeeded), if you fail to see
a reduction in feature structure traversals, your filter may be defective. Make the necessary corrections
until you observe a tangible reduction in unification failures; then consider inclusion of lexemes in the
computation of the rule filter. Re-run your experiments and comment on the results.

7 Submitting Your Results

Since our programs are of some interesting complexity at this point, please make sure to submit the
contents of the entire ‘grammar9’ directory.

Submit your results in email to Dan and Stephan by noon on Saturday, November 18.


