Computational Linguistics |l
— Grammars, Algorithms, Statistics —

Dan Flickinger
Oslo and Stanford Universities
danf@csli.stanford.edu

Tore Langholm
Universitetet i Oslo

torel@ifi.uio.no

Stephan Oepen
Oslo and Stanford Universities
oe@csli.stanford.edu

Review: Feature Structure Unification & Copying

Basic Notions
e Typed feature structures encoded as directed acyclic graphs (DAGs);
e each node bears a type and a set of arcs (aka feature — value pairs);

e feature structure reentrancy (coreference) corresponds to DAG identity;

e unification creates equivalence classes, encoded through forwarding.

Basic Operations
e unify()— make two DAGs equivalent, check and combine all information;
— at each node, glb () types, forward, recurse over and accumulate arcs;

e copy()— create structurally equivalent copy (preserving reentrancies);

— at each node, copy slot as short-term memory, reset upon completion.

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics |I: Categories & Rules (2)

phrasel

Feature Structure Reentrancy (AVM)

HEAD |1|verb

ARGS

ne-list!

FIRST

REST

word

ne-list

ORTH “chased”
HEAD

FIRST {HEAD noun]
syn-struc

REST *null*

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics Il: Categories & Rules (3)

Feature Structure Reentrancy (DAG)

phr.ase ye;rb
HEAD
ARGS HEAD
“ne-list” word “‘chased”
FIRST ORTH
REST
ne;list S yfj-;struc noun
FIRST HEAD
REST

‘nyll*

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics Il: Categories & Rules (4)

The Costs of Feature Structure Manipulation

Basic Cost Measure

e Visit each DAG node once (node operations ‘constant’): full traversal,

e linear in the number of nodes — upper bound is size of largest DAG.

Naive Complexity Theory
e Prior to each (destructive) unification, make copies of both input DAGsS;

e upon completion of each copy, recursively reset copy slot on all nodes.

restore() copy) unify ()
1 2 S

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics Il: Categories & Rules (5)

The unify() vs. copy() Trade-Off

Destructive Unification [Boyer & Moore, 1972]
e Permanently alter both input dags: setf () on forward, type, and arcs;

— over copying —two full copies required for only one result structure;

— early copying— majority of unifications fail: many unnecessary copies.

Non-Destructive Unification [Wroblewski, 1987]

e Incrementally build up result DAG during unification, one node at a time;

— eliminates over copying, reduces early copying more or less effectively.

Quasi-Destructive Unification [Tomabechi, 1991]
e Alter input DAGs in way that is reversible (at small cost): ‘generations’;

— copy out result only after unification success, no over or early copying.

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics Il: Categories & Rules (6)

Generation Counting

e Protect DAG slots with generation counter — ‘expiration date’ of value;

e access: require valid generation; assignment: set value and generation;

— implemented through interaction of global counter and ADT functionality.

/}defstruct dag
forward type arcs xcopy (generation 0))

(defparameter *generation* 1)

(defun dag-copy (dag)

(when (= (dag-generation dag) *generation*) (dag-xcopy dag)))
(defsetf dag-copy dag-set-copy)
(defun dag-set-copy (dag value)

(setf (dag-generation dag) *generationx)
(setf (dag-xcopy dag) value))

N

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics Il: Categories & Rules (7)

Unification-Based Parsing

Adaptations to CFG-Based Chart Parser
e Make all elements of X, C', and P from the grammar feature structures;
e substitute unification and equivalence test for category comparison;
e unify category of passive edges with argument position of active edges;
— edge structure LHS is DAG, RHS list of paths to argument positions;
— fundamental-rule() result of unification is category for new edge;

— pack-edge () equivalence test: two DAGs contain same information;

e test spanning passive edges for compatibility against start symbol S.

4 I
#E[id: (i-j) dag --> edge, ... edge; . path;., ... path, { alternates }*]

. J
4 N
#E[42: (0-8) head-specifier-rule --> 13 . (ARGS REST FIRST)]

. J

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics Il: Categories & Rules (8)

Reminder: The Format of Grammar Rules in the LKB

P HEAD
COMPS ()| SPR ,
daughter COMPS (13)) daughter.
mother! ughtent - ghter, |
'HEAD
SPR
COMPS ()
HEAD
ARGS { SPR ,)
COMPS ([3])
mother! aaughter, | I daughter,!

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics Il: Categories & Rules (9)

Additional DAG Manipulation Functionality

Unification into Argument Position

e Additional parameter to unify (): unify dag, into dag; under path:

[(defun unify (dagl dag2 &optional path) J
er)

e empty path: regular unification; otherwise find first path element in dag,
recurse with corresponding arc value from dag;, dag,, and rest of path.

Equivalence Test

e Similar to unify (): traverse two dags in parallel, but no modifications;

e reentrancies: for each node, record corresponding node from second
dag in copy slot; non-empty copy values need to match current nodes.

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics Il: Categories & Rules (10)

Unification-Based Parsing—Practical Concerns

Observations
e Typical systems: 90+ per cent of parsing time go to DAG manipulation;
e most unifications fail: predict unification failure cheaply, where possible;
— rule filter: rule feeding relations; quick check: most likely failure paths;
e lexicalisation: argument positions in rules may be highly underspecified;
— head-driven parsing: instantiate RHS bidirectionally, starting from head:;

e many unifications fail very early: copy () more expensive than unify();

— memory is expensive: redo a couple of unfications instead of one copy.

Several orders of magnitude average speed-up by reducing constants I

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (11)

Unification-Based Parsing—Optimizations

Rule Filter

e ‘Specifier—Head’ cannot feed
into first argument position of
‘Head —Complement’ (COMPS);

— precompute rule filter relation;

e fundamental rule checks filter
before attempting a unification.

Head-Driven Parsing

e First argument position of
‘Specifier—Head’ cannot fail:
large number of active edges;

— bi-directional rule instantiation:
head argument position first.

-

head-final

_

signl

Head — Complement Rule

SPR
head-initiall " >

T

SPR
FIRST 2]
REST

COMPS phrase[1

Specifier—Head Rule

SPR ()
COMPS [2)()

T

SPR <>}

phraseH COMPS

phrase

~

/

OSLO — 14-NOV-06 (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (12)

