
Computational Linguistics II
— Grammars, Algorithms, Statistics —

Dan Flickinger
Oslo and Stanford Universities
danf@csli.stanford.edu

Tore Langholm
Universitetet i Oslo
torel@ifi.uio.no

Stephan Oepen
Oslo and Stanford Universities
oe@csli.stanford.edu

Review: Feature Structure Unification & Copying

Basic Notions

• Typed feature structures encoded as directed acyclic graphs (DAGs);

• each node bears a type and a set of arcs (aka feature – value pairs);

• feature structure reentrancy (coreference) corresponds to DAG identity;

• unification creates equivalence classes, encoded through forwarding.

Basic Operations

• unify() — make two DAGs equivalent, check and combine all information;

→ at each node, glb() types, forward, recurse over and accumulate arcs;

• copy() — create structurally equivalent copy (preserving reentrancies);

→ at each node, copy slot as short-term memory, reset upon completion.

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (2)

Feature Structure Reentrancy (AVM)

phrase

HEAD 1 verb

ARGS

ne-list

FIRST

word

ORTH “chased”
HEAD 1

REST

ne-list

FIRST
syn-struc

HEAD noun

REST *null*

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (3)

Feature Structure Reentrancy (DAG)

phrase
HEAD

-verb

R

ARGS

ne-list
FIRST

-word
ORTH

-“chased”

HEAD

I

R

REST

ne-list
FIRST

-
syn-struc

HEAD
-
noun

R

REST

null

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (4)

The Costs of Feature Structure Manipulation

Basic Cost Measure

• Visit each DAG node once (node operations ‘constant’): full traversal ;

• linear in the number of nodes → upper bound is size of largest DAG.

Naı̈ve Complexity Theory

• Prior to each (destructive) unification, make copies of both input DAGs;

• upon completion of each copy, recursively reset copy slot on all nodes.

restore() copy() unify()

1 2 5

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (5)

The unify() vs. copy() Trade-Off

Destructive Unification [Boyer & Moore, 1972]

• Permanently alter both input dags: setf() on forward, type, and arcs;

→ over copying — two full copies required for only one result structure;

→ early copying — majority of unifications fail: many unnecessary copies.

Non-Destructive Unification [Wroblewski, 1987]

• Incrementally build up result DAG during unification, one node at a time;

→ eliminates over copying, reduces early copying more or less effectively.

Quasi-Destructive Unification [Tomabechi, 1991]

• Alter input DAGs in way that is reversible (at small cost): ‘generations’;

→ copy out result only after unification success, no over or early copying.

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (6)

Generation Counting

• Protect DAG slots with generation counter → ‘expiration date’ of value;

• access: require valid generation; assignment: set value and generation;

→ implemented through interaction of global counter and ADT functionality.

'

&

$

%

(defstruct dag

forward type arcs xcopy (generation 0))

(defparameter *generation* 1)

(defun dag-copy (dag)

(when (= (dag-generation dag) *generation*) (dag-xcopy dag)))

(defsetf dag-copy dag-set-copy)

(defun dag-set-copy (dag value)

(setf (dag-generation dag) *generation*)

(setf (dag-xcopy dag) value))

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (7)

Unification-Based Parsing

Adaptations to CFG-Based Chart Parser

• Make all elements of Σ, C, and P from the grammar feature structures;

• substitute unification and equivalence test for category comparison;

• unify category of passive edges with argument position of active edges;

→ edge structure LHS is DAG, RHS list of paths to argument positions;

→ fundamental-rule() result of unification is category for new edge;

→ pack-edge() equivalence test: two DAGs contain same information;

• test spanning passive edges for compatibility against start symbol S.
�
�

�
�#E[id: (i-j) dag --> edge1 ... edgei . pathi+1 ... pathn {alternates }∗]

�
�

�
�#E[42: (0-8) head-specifier-rule --> 13 . (ARGS REST FIRST)]

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (8)

Reminder: The Format of Grammar Rules in the LKB

mother

HEAD 1
SPR 2
COMPS 〈〉

· · ·

−→

daughter1

HEAD 1
SPR 2
COMPS

〈

3
〉

, 3

daughter2

· · ·

mother

HEAD 1
SPR 2
COMPS 〈〉

· · ·

ARGS
〈

daughter1

HEAD 1
SPR 2
COMPS

〈

3
〉

, 3

daughter2

· · ·

〉

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (9)

Additional DAG Manipulation Functionality

Unification into Argument Position

• Additional parameter to unify(): unify dag2 into dag1 under path:
#

"

!
(defun unify (dag1 dag2 &optional path)

...)

• empty path: regular unification; otherwise find first path element in dag1,
recurse with corresponding arc value from dag1, dag2, and rest of path.

Equivalence Test

• Similar to unify(): traverse two dags in parallel, but no modifications;

• reentrancies: for each node, record corresponding node from second
dag in copy slot; non-empty copy values need to match current nodes.

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (10)

Unification-Based Parsing—Practical Concerns

Observations

• Typical systems: 90+ per cent of parsing time go to DAG manipulation;

• most unifications fail: predict unification failure cheaply, where possible;

→ rule filter : rule feeding relations; quick check : most likely failure paths;

• lexicalisation: argument positions in rules may be highly underspecified;

→ head-driven parsing: instantiate RHS bidirectionally, starting from head;

• many unifications fail very early: copy() more expensive than unify();

→ memory is expensive: redo a couple of unfications instead of one copy.

Several orders of magnitude average speed-up by reducing constants

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (11)

Unification-Based Parsing—Optimizations

Rule Filter
• ‘Specifier – Head’ cannot feed

into first argument position of
‘Head – Complement’ (COMPS);

→ precompute rule filter relation;

• fundamental rule checks filter
before attempting a unification.

Head-Driven Parsing
• First argument position of

‘Specifier – Head’ cannot fail:
large number of active edges;

→ bi-directional rule instantiation:
head argument position first.

'

&

$

%

Head – Complement Rule

head-initial

SPR 1
COMPS 3

sign

SPR 1

COMPS

FIRST 2
REST 3

2
phrase

[]

Specifier – Head Rule

head-final

SPR 〈〉

COMPS 2 〈〉

1
phrase

[]

phrase

SPR
〈

1
〉

COMPS 2

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (12)

