Computational Linguistics IT (Fall 2006, Lisp Games)

Goals

1. Become familiar with emacs and the Common-Lisp interpreter;
2. practice basic list manipulation: selection, construction, predicates;

3. write a series of simple (recursive) functions; compose multiple functions.

1 Bring up the Editor and the LKB (0 Points)

(a) Like last week, login to the Linux server ‘mt.ifi.uio.no’ through X Windows. Launch the LKB and find
the emacs buffer named ‘*common-1lisp*’. Here you can interact with Allegro Common Lisp, the Lisp
system behind the LKB.

(b) For this session, we do not supply a starting grammar or skeleton software, but will merely interact with
the Lisp interpreter directly, i.e. evaluate Lisp s-expressions through the ‘*common-lisp*’ buffer. To
record your results for later inspection, in emacs, you can construct a file in which you save your results
and comments.

2 List Selection (0 Points)

From each of the following lists, select the element pear:
(a
(b

) (apple orange pear lemon)
)

c) ((apple) (orange) (pear) (lemon))
)
)

((apple orange) (pear lemon))
(
(d
(e

(apple (orange) ((pear (lemon))))
(apple (orange (pear (lemon))))

3 List Construction (0 Points)

Show how each of the lists from Exercise 2 can be created through nested applications of cons(), e.g.

(cons ’apple (cons ’orange (cons ’pear (cons ’lemon nil))))
for the first example.

Note: In the notation ‘cons()’ the pair of parentheses is not part of the operator name but merely
indicates that the symbol is used as a function name.

4 Variable Binding and Evaluation (0 Points)

What needs to be done so that each of the following expressions evaluate to 427

(a) foo

(b) (* foo bar)

(c) (length baz)
)

(d) (length (rest (first (first (reverse baz)))))



Quoting (0 Points)

Determine the results of evaluating the following expressions and explain what you observe.

(a)
(b)
(c) (length (quote (quote "foo bar baz")))
()

(length "foo bar baz")
(length (quote "foo bar baz"))

(length ’(quote "foo bar baz"))

List Selection (0 Points)

Assume that the symbol *foo* is bound to a looong list of unknown length, e.g. (a b ¢ ... x y 2).

(a) Find a way of selecting the next-to-last element of *foox*.

(b) For each additional expression that achieves the same effect and uses a method of selection that is
different from your solution to exercise (a) in an interesting way, two complimentary points will be
awarded.

Interpreting Common-Lisp (0 Points)

What is the purpose of the following function; how does it achieve that goal? Explain the effect of the
function using (at least) one example.

(a) (defun ? (?7)
(append 7 (reverse 7)))

Note: Please comment specifically on the various usages of the symbol ‘?’ in the function definition.

A Predicate (0 Points)

Write a unary predicate palindromep() that tests its argument as to whether it is a list that reads the
same both forwards and backwards, e.g.

? (palindromep ’AblewasIerelIsawE1lDba))

— t

Recursive List Manipulation (0 + 0 = 0 Points)

Write a two-place function where() that takes an atom as its first and a list as its second argument;
where () determines the position (from the left) of the first occurrence of the atom in the list, e.g.

? (where ’c ’(a b cde c))
— 2

Note: Like all Common-Lisp functions using numerical indices into a sequence, where () counts positions
starting from 0, such that the third element is at position 2.

Write a two-place function ditch() that takes an atom as its first and a list as its second argument;
ditch() removes all occurrences of the atom in the list, e.g.

(ditch ’c ’(a b cd e c))
— (A BDE)

(ditch ’f (abcd e c))
— (ABCDEDO



10
(a)

11

More Recursion (0 + 0 + 0 = 0 Points)

Write a two-place function set-union(), that takes as its arguments two sets (represented as lists in which
no element occurs more than once and the order of elements is irrelevant); not so surprisingly, set-union()
returns the union of the two input sets. Analogously, write two-place functions set-intersection() und
set-subtraction(), which compute the intersection and set difference, respectively; e.g.

? (set-union ’(a b c) ’(d e a))

— (CBDE A

? (set-intersection (a b c) ’(d e a))
— (A

? (set-subtraction ’(a b c) ’(d e a))
— (B C)

Note: All three functions can assume that their input arguments are proper sets. Consider using function-
ality implemented earlier during this exercise for re-use in (at least) the definition of set-subtraction().

Multiple Recursion (0 Points)

Write a unary recursive function flatten() that takes a list as its argument and loses all embeddings
inside of the list, i.e. accumulates all non-list elements of the input in one flat list; e.g.

? (flatten ’((a) (b ((c)))))
— (A B C)

Note: Although we may not have experienced it so far, it is not unusual for recursive functions to have
more than one base case (where the recursion terminates) and call themselves more than once in the
recursive branch; use cond () in the definition of flatten() and note the effects of, e.g.

? (append ’(a b ¢) nil)



