
Computational Linguistics II
— Grammars, Algorithms, Statistics —

Dan Flickinger
Oslo and Stanford Universities
danf@csli.stanford.edu

Tore Langholm
Universitetet i Oslo
torel@ifi.uio.no

Stephan Oepen
Oslo and Stanford Universities
oe@csli.stanford.edu



So, Why (Computational) Grammar?
'

&

$

%

Wellformedness
• Kim was happy because passed the exam.

• Kim was happy because final grade was an A.

• Kim was happy when she saw on television.
'

&

$

%

Meaning
• Kim gave Sandy a book.

• Kim gave a book to Sandy.

• Sandy was given a book by Kim.
'

&

$

%

Ambiguity
• I saw the astronomer with the telescope.

• Have her report on my desk immediately!

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (2)



What We Are About to Do (and Why)

Course Outline
• Extend understanding of (natural) language as a system of rules;

• learn how to formalize grammars through typed feature structures;

• design and implement common algorithms and probabilistic models;

• solve weekly exercises: immediate gratification (risk of late hours).

Three Interacting Components
• grammar engineering formalize linguistic theories with complex

interactions of multiple phenomena; implementation and debugging;

• processing understand common parsing algorithms; unification of
feature structures; implement an efficient unification-based parser;

• probabilistic models capture relative frequency of (competing)
phenomena; approximate graded grammaticality or soft constraints.

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (3)



Student Experimentation — Immediate Gratification

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (4)



Some Applications of Computational Grammars

Machine Translation
• Traditional: analyse source to some degree, transfer, generate target.

Text ‘Understanding’
• Email auto- (or assisted) response: interpret customer requests;

• Semantic Web: annotate WWW with structured, conceptual data.

(Spoken) Dialogue Systems

Grammar & Controlled Language Checking

Summarization & Text Simplification

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (5)



Some Areas of Descriptive Grammar

Phonetics The study of speech sounds.

Phonology The study of sound systems.

Morphology The study of word structure.

Syntax The study of sentence structure.

Semantics The study of language meaning.

Pragmatics The study of language use.

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (6)



Grammar Engineering from a CS Perspective

Implementation Goals

• Translate linguistic constraints into specific formalism → formal model;

• computational grammar provides mapping between form and meaning;

• assign correct analyses to grammatical, reject ungrammatical inputs;

• parsing and generation algorithms: apply mapping in either direction.

Analogy to (Object-Oriented) Programming

• Computational system with observable behavior: immediately testable;

• typed feature structures as a specialized (OO) programming language;

• make sure that all the pieces fit together; revise – test – revise – test ...

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (7)



The Linguistic Knowledge Builder (LKB)

General & History

• Specialized grammar engineering environment for TFS grammars;

• main developers: Copestake (original), Carroll, Malouf, and Oepen;

• open-source and binary distributions (Linux, Windows, and Solaris).

Grammar Engineering Functionality

• Compiler for typed feature structure grammars → wellformedness;

• parser and generator: map from strings to meaning and vice versa;

• visualization: inspect trees, feature structures, intermediate results;

• debugging and tracing: interactive unification, ‘stepping’, et al.

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (8)



Why Common-Lisp for Implementation Exercises?

• Arguably most widely used language for ‘symbolic’ computation;

• easy to learn: extremely simple syntax; straightforward semantics;

• a rich language: multitude of built-in data types and operations;

• full standardization; Common-Lisp has been stable for a decade;

• LKB (experimentation environment) implemented in Common-Lisp;

→ for our purposes, (at least) as good a choice as any other language.

n! ≡



















1 for n = 0

n × (n − 1)! for n > 0

'

&

$

%

(defun ! (n)

(if (= n 0)

1

(* n (! (- n 1)))))

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (9)



Course Organization

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (10)



Comments on Background Literature

Formal Grammar and General NLP

• Sag, Ivan A. Tom Wasow, and Emily M. Bender: Syntactic Theory.
A Formal Introduction (2nd Edition). Stanford, CA: CSLI Publications
(2003);

• Jurafsky, Daniel and Martin, James H.: Speech and Language Process-
ing. An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition. Upper Saddle River, NJ: Prentice
Hall (2000).

The Linguistic Knowledge Builder

• Copestake, Ann: Implementing Typed Feature Structure Grammars.
Stanford, CA: CSLI Publications (2001).

oslo — -aug- (oe@csli.stanford.edu)

Computational Linguistics II: Overview (11)


