
Computational Linguistics II
— Grammars, Algorithms, Statistics —

Dan Flickinger
Oslo and Stanford Universities
danf@csli.stanford.edu

Tore Langholm
Universitetet i Oslo
torel@ifi.uio.no

Stephan Oepen
Oslo and Stanford Universities
oe@csli.stanford.edu



(1) Unification-Based Grammar

(a) Show the feature structure representation of the following rule as it is
used in our LKB grammars:

head-initial





















HEAD 1
SPR 2
COMPS 3





















−→

expression

































HEAD 1
SPR 2

COMPS













FIRST 4
REST 3













































, 4
phrase









(b) What is the (approximate) name of the above rule in our grammar?
Sketch its functionality in a few sentences and provide two examples
of types of phrases built using this rule.

(c) Why did we choose to implement rules as single feature structures?

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (2)



(2) Typed Feature Structures

(a) Draw the following feature structure in DAG notation, i.e. as a directed
acyclic graph of labeled nodes and directed arcs:

phrase































































HEAD 1 verb

ARGS

*ne-list*

















































FIRST

word













ORTH “chased”
HEAD 1













REST

*ne-list*



















FIRST
expression



HEAD noun




REST *null*

































































































































(b) In no more than two sentences, comment on the correspondences be-
tween elements of the feature structure and elements of the DAG.

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (3)



(3) Linguistic Concepts

(a) Name at least two syntactic properties that characterize (syntactic)
heads in the formation of phrases. Use one or two examples.

(b) Sketch a constituent tree for the sentence the fierce dog chased the cat
near the aardvark. On each node, provide information about its general
category (using abbreviatory notions like ‘Det’, ‘N’, ‘NP’, ‘VP’, et al.) and
for each branch of the tree indicate whether the constituent dominated
by it acts as a head, specifier, complement, or modifier.

(c) What is the difference between the function of the prepositional phrases
(marked by square brackets) in the following two sentences:

(i) that cat gave the aardvark [to the dogs]
(ii) the cat chased the aardvark [near the dogs]

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (4)



(4) Parsing and (5) Unification

(a) Which aspect(s) of natural language (grammars) make(s) parsing (us-
ing context-free grammars, say) a surprisingly hard problem? How is
a naı̈ve parser affected in its performance, and what is the worst-case
complexity relative to input string length? Mention at least one example.

(b) How does our generalized chart parser avoid this worst-case complex-
ity, in general and for the example you gave above? Sketch, in a few
sentences, the central idea in chart-based parsing.

(a) In a few sentences, recall the notions of early- and over-copying. Does
the generation counting scheme for the copy slot of our dag structures
reduce either one? If so, how? If not, why not?

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (5)



(6) Common-Lisp

(a) For each of the following lists, make the underlying structure explicit
by (i) showing the list in ‘box notation’, and (ii) writing a Common-Lisp
expression to construct the list, using exclusively the cons() function,
the atoms that are elements of the list, and nil.

(i) (1 2 3)

(ii) ((1) (2 3))

(b) How many elements are contained in the list returned by the following
expression? What will happen when we use the function length() to
count them?

(let ((foo (list 42)))

(setf (rest foo) foo))

oslo — -nov- (oe@csli.stanford.edu)

Computational Linguistics II: Categories & Rules (6)


